Structural rigidity and thermal conductance of nanostructured carbon: nanotubes and foams

David Tománek
Physics-Astronomy Department
Michigan State University

```
tomanek@msu.edu
http://www.pa.msu.edu/~tomanek/
```

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
and reviewing this collection of information. Send comm Headquarters Services, Directorate for Information Oper	nents regarding this burden esti rations and Reports (0704-0188	mate or any other aspect of this colle), 1215 Jefferson Davis Highway, S	ection of information, inc uite 1204, Arlington, VA	cluding suggestions for reducing 22202-4302. Respondents sho	ould be aware that notwithstanding any other provision of	
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid Of 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 30-05-2001 Workshop Presentations				3. DATES COVERED (FROM - TO) 30-05-2001 to 01-06-2001		
4. TITLE AND SUBTITLE		1		5a. CONTRACT		
Structural rigidity and thermal conductance of nanostructured carbon: nanotubes and				5b. GRANT NUMBER		
foams				5c. PROGRAM ELEMENT NUMBER		
Unclassified				SC. PROGRAM I	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT N	UMBER	
Tomanek, David;				5e. TASK NUMBER		
				5f. WORK UNIT		
7 DEDECORANIC ORGANIZATI	IONINAME AND	ADDDEGG				
7. PERFORMING ORGANIZATION NAME AND ADDRESS					G ORGANIZATION REPORT	
Michigan State University Physics Astornomy Department			NUMBER			
Physics-Astornomy Department xxxxx, MIxxxxx						
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10 CDONCOD /A	AONITODIC A CDONIVA(C)	
Office of Naval Research International Field Office				10. SPONSOR/MONITOR'S ACRONYM(S)		
Office of Naval Research Office of Naval Research				11. SPONSOR/MONITOR'S REPORT		
Washington, DCxxxxx			NUMBER(S)			
12. DISTRIBUTION/AVAILABI	I ITY STATEME!	VT				
APUBLIC RELEASE	EIII SIMIEME	. 11				
13. SUPPLEMENTARY NOTES						
See Also ADM001348, Thermal I		p 2001, held in Camb	ridge, UK on N	May 30-June 1, 200	11. Additional papers can be	
downloaded from: http://www-me				., ,	rur	
14. ABSTRACT						
Structural rigidity, phonon modes	, and thermal cond	uctivity of carbon nan	ostructures: na	notubes and graph	itic foam.	
15. SUBJECT TERMS	,	<u> </u>		<i>C</i> 1		
16. SECURITY CLASSIFICAT	ION OF:	17. LIMITATION	18.	119 NAME OF R	RESPONSIBLE PERSON	
		OF ABSTRACT	NUMBER	Fenster, Lynn		
		Public Release		Ifenster@dtic.mi	il	
			28		•	
a. REPORT b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER		
Unclassified Unclassified				International Area Code Area Code Telephone Number		
	1					
				703767-9007 DSN		
				427-9007		
				-	Standard Form 298 (Rev. 8-98)	
					Prescribed by ANSI Std Z39.18	

Acknowledgements

Savas Berber, Michigan State University

Young-Kyun Kwon, U.C. Berkeley

Susumu Saito, Tokyo Institute of Technology

Koichiro Umemoto, Tokyo Institute of Technology

Financial Support:

Office of Naval Research

DARPA

NASA

Outline

- Motivation
- Computational Techniques
- Thermal Conductivity in Nanotubes
 - Approaches and Pitfalls
 - Temperature Dependent Thermal Conductivity
 - Effect of Inter-Wall Interactions on Thermal Conductivity
 - Effect of Isotope Mixture on Thermal Conductivity

• Low-Frequency Phonon Modes of Nanotubes

- Equilibrium Structure of Multi-Wall Tubes and Ropes
- Soft Phonon Modes of Single-Wall Tubes
- Libration and Rotation Dynamics of Interacting Tubes
- Dynamics of Twistons and Orientational Melting

• Hybrid Graphitic Foam

- Equilibrium Structure
- Elastic Properties
- Electronic Structure

Summary and Conclusions

• Can Nanotubes conduct heat well?

• Which Phonon Modes limit Thermal Conduction?

Can interacting Nanotubes Spin and Twist?

• Is nanostructured carbon foam the ultimate structural and thermal material?

- Morphology of carbon nanotubes
 - Structure of carbon nanotubes:

• Classification of carbon nanotubes:

 $\vec{R} = m\vec{a_1} + n\vec{a_2}$ defines uniquely the (m,n) nanotube

• Types of achiral nanotubes:

(n, n): armchair nanotubes

Computational Techniques

- Total Energy Calculations
 - Ab initio Density Functional Formalism
 - * Plane-wave code with energy cutoff of 50 Rydbergs
 - * Soft nonlocal pseudopotentials and Ceperley-Alder **exchangecorrelation** potential
 - * 200,000 plane waves in the basis set
 - Parametrized Linear Combination of Atomic Orbitals (LCAO)
 Formalism
 - * Parametrization based on *ab initio* Density Functional results
 - * Very fine k-points mesh for the inter-tube interaction
 - * O(N) technique for very large systems
 - * Ideally suitable for massively parallel computation
 - Tersoff Potential
- Thermodynamics: Monte Carlo simulations
- Time-dependent processes: Molecular dynamics simulations
- Transport: Landauer-Büttiker Formalism
 - Conductance G(E) evaluated by using

$$G(E) = \frac{2e^2}{h}T(E) = \frac{1}{12.9 \text{ k}\Omega}T(E)$$

Thermal Conductivity in Nanotubes

VOLUME 84, NUMBER 20

PHYSICAL REVIEW LETTERS

15 May 2000

Unusually High Thermal Conductivity of Carbon Nanotubes

Savas Berber, Young-Kyun Kwon,* and David Tománek Department of Physics and Astronomy, and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 (Received 23 February 2000)

$$\frac{1}{A}\frac{dQ}{dt} = -\mathbf{0}\frac{dT}{dz}$$

• Experimental Observation for a Nanotube "Mat"

J. Hone, M. Whitney, A. Zettl, Synthetic Metals 103, 2498 (1999)

- Raw data (T = 300 K): $\lambda \approx 0.7 \text{ W/m} \cdot \text{K}$

- Extrapolated data (T = 300 K): $\lambda \approx 1,800 - 6,000 \text{ W/m} \cdot \text{K}$

▶ Approaches and Pitfalls

• Direct Molecular Dynamics Approach

- Temperature profile in a (10, 10) nanotube

- Pitfalls of Direct Molecular Dynamics:
 - $-L << l \approx 100 \text{ nm}$
 - \implies velocity rescaling mimics "grain boundary", limits l
 - Large statistical uncertainty
 - -T(z) not linear
 - $-dT/dz >> 0 \Longrightarrow$ spatial variation of thermal conductivity

• Equilibrium Molecular Dynamics Approach

Green-Kubo formula for the Navier-Stokes thermal conductivity:

$$\lambda = \frac{1}{3Vk_BT^2} \int_0^\infty \langle \mathbf{J}(t) \cdot \mathbf{J}(0) \rangle dt$$

$$\mathbf{J}(t) = \frac{d}{dt} \sum_{i} \mathbf{r}_{i} \Delta e_{i} = \sum_{i} \mathbf{v}_{i} \Delta e_{i} - \sum_{i} \sum_{j(\neq i)} \mathbf{r}_{ij} (\mathbf{f}_{ij} \cdot \mathbf{v}_{i})$$

- Heat flux autocorreltation function in a (10, 10) nanotube

- Pitfalls of Equilibrium Molecular Dynamics:
 - Slow convergence
 - Extensive ensemble averaging crucial
 - Autocorrelation function requires large data storage

• Non-Equilibrium Molecular Dynamics Approach

$$\lambda = \lim_{\mathbf{F}_e \to 0} \tilde{\lambda}(\mathbf{F}_e) , \quad \tilde{\lambda}(\mathbf{F}_e) \equiv \lim_{t \to \infty} \frac{\langle J_z(\mathbf{F}_e, t) \rangle}{F_e T V}$$

 F_e = thermal force, α = Nosé-Hoover thermostat multiplier

$$\Delta \mathbf{F}_i = \Delta e_i \mathbf{F}_e - \sum_{j(\neq i)} \mathbf{f}_{ij} (\mathbf{r}_{ij} \cdot \mathbf{F}_e) + \frac{1}{N} \sum_{j} \sum_{k(\neq j)} \mathbf{f}_{jk} (\mathbf{r}_{jk} \cdot \mathbf{F}_e) - \alpha \mathbf{p}_i$$

- Axial heat flux in a (10, 10) nanotube for $F_e = 0.2 \text{ Å}^{-1}$

— Heat transport dependence on F_e

- Pitfalls of Non-Equilibrium Molecular Dynamics:
 - $-F_e \rightarrow 0$ limit requires careful evaluation
 - Careful coupling to thermostat required

- ▶ Temperature Dependent Thermal Conductivity
 - Thermal conductivity of an isolated (10,10) carbon nanotube

• Thermal conductivity of various carbon allotropes

▶ Effect of Inter-Wall Interactions on Thermal Conductivity

• Thermal conductivity of a (5,5)@(10,10) double-wall carbon nanotube

• Thermal conductivity of bundled (10,10) nanotubes

▶ Effect of Isotope Mixture on Thermal Conductivity

Low-Frequency Phonon Modes of Nanotubes

- ▶ Equilibrium Structure of Bundled and Multi-Wall Tubes
 - Interaction between neighboring (10,10) tubes

• Equilibrium structure of bundled rigid (10,10) tubes

- Two-dimensional oblique lattice.

• (5,5)@(10,10) Double-Wall Tube Geometry

[Electronic and structural properties of multiwall carbon nanotubes, Young-Kyun Kwon and David Tománek, Phys. Rev. B 58, R16001 (1998)]

– Dependence of Energy on Off-Axis Displacement Δr

▶ Libration and Rotation Dynamics

• (10,10) tube "ropes" [PRB 58, R13314 (1998)]

- Librational motion at $T \leq T_{OM}$
- Libration frequency $\nu \approx 12 60 \text{ cm}^{-1}$
- Experimental observation (W. Holmes et al.):
 - * Infrared modes at $\nu \approx 15, 22, 40 \text{ cm}^{-1}$
 - * These modes disappear at $T \approx 30 180 \text{ K}$
- (5,5)@(10,10) double-wall tube [PRB 58, R16001 (1998)]

- Librational motion at $T \leq T_{OM}$
- Libration frequency $\nu \approx 33 \text{ cm}^{-1}$

▶ Soft Phonon Modes of Single-Wall Tubes

▶ Thermal Expansion of Single-Wall Tubes

⇒ <u>Thermal contraction</u> dominates over bond expansion at low temperatures

▶ Thermodynamics of Orientational Melting

VOLUME 84, NUMBER 7

PHYSICAL REVIEW LETTERS

14 February 2000

Orientational Melting in Carbon Nanotube Ropes

Young-Kyun Kwon and David Tománek

Department of Physics and Astronomy, and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 (Received 24 August 1999)

• Floppy tubes – unrealistic model (Torsionally decoupled "layers" within tube)

- Orientational melting at $T_{OM} \approx 55 \text{ K}$
- Librational motion for $T \lesssim T_{OM}$
- Free rotation at $T \gtrsim T_{OM}$
- Rigid tubes realistic model (torsional coupling between "layers" within tube)

$$\Delta E_{tor,at}(\Delta \varphi/\Delta L) \approx \kappa \left(\frac{\Delta \varphi}{\Delta L}\right)^2$$

* Torsion is thermally activated during synthesis

- Orientational melting

- * Orientational disclocations, introduced during synthesis, are pinned for $T \lesssim T_{OM}$.
- * Axial motion of orientational dislocations corresponds to tube rotation.
- * Orientational melting, described by free "diffusion" of orientational dislocations along tubes, occurs for $T \gtrsim T_{OM} \approx 100 \text{ K}$.
- * Orientational dislocations (twistons) are scattering centers for electrons \rightarrow strong effect on transport (1D system!).

Twistons of Évora (Portugal)

Morphology of Hybrid Graphitic Foam

Relationship to graphite

Folding Process

Hybrid Graphitic Foam

Optimized Structure

Elastic Properties

	New graphitic foam	Graphite	Diamond
ρ	2.48 g/cm ³	2.27 g/cm ³	3.51 g/cm ³
C ₁₁ (along a axis)	9.02 Mbar	12.3 Mbar	11.29 Mbar
C ₂₂ (along b axis)	9.42 Mbar		
C ₃₃ (along c axis)	0.816 Mbar	0.34 Mbar	
Bulk modulus	0.792 Mbar	0.326 Mbar	4.69 Mbar

Electronic Structure

Graphitic foam is metallic: $N(E_F)=1.0$ states/eV/spin

Summary and Conclusions

• We studied the structural rigidity, phonon modes, and thermal conductivity of **carbon nanostructures**: nanotubes and graphitic foam.

• We found that

- The unusually **high thermal conductance** of nanotubes results from the large phonon mean free path.
- Weak inter-tube coupling results in a very soft librational motion.
- Orientational dislocations are frozen in during the synthesis of interacting nanotubes. Relatively free diffusion motion of orientational dislocations occurs for $T \gtrsim T_{OM} \approx 160 \text{ K}$, marking the onset of orientational melting.
- Hybrid graphitic foam offers an unsusual combination of properties: low mass density, high structural rigidity, possibly high electric and thermal conductivity.